Horizontally Acquired Biosynthesis Genes Boost Coxiella burnetii's Physiology
نویسندگان
چکیده
Coxiella burnetii, the etiologic agent of acute Q fever and chronic endocarditis, has a unique biphasic life cycle, which includes a metabolically active intracellular form that occupies a large lysosome-derived acidic vacuole. C. burnetii is the only bacterium known to thrive within such an hostile intracellular niche, and this ability is fundamental to its pathogenicity; however, very little is known about genes that facilitate Coxiella's intracellular growth. Recent studies indicate that C. burnetii evolved from a tick-associated ancestor and that the metabolic capabilities of C. burnetii are different from that of Coxiella-like bacteria found in ticks. Horizontally acquired genes that allow C. burnetii to infect and grow within mammalian cells likely facilitated the host shift; however, because of its obligate intracellular replication, C. burnetii would have lost most genes that have been rendered redundant due to the availability of metabolites within the host cell. Based on these observations, we reasoned that horizontally derived biosynthetic genes that have been retained in the reduced genome of C. burnetii are ideal candidates to begin to uncover its intracellular metabolic requirements. Our analyses identified a large number of putative foreign-origin genes in C. burnetii, including tRNAGlu2 that is potentially required for heme biosynthesis, and genes involved in the production of lipopolysaccharide-a virulence factor, and of critical metabolites such as fatty acids and biotin. In comparison to wild-type C. burnetii, a strain that lacks tRNAGlu2 exhibited reduced growth, indicating its importance to Coxiella's physiology. Additionally, by using chemical agents that block heme and biotin biosyntheses, we show that these pathways are promising targets for the development of new anti-Coxiella therapies.
منابع مشابه
The Intervening Sequence of Coxiella burnetii: Characterization and Evolution
The intervening sequence (IVS) of Coxiella burnetii, the agent of Q fever, is a 428-nt selfish genetic element located in helix 45 of the precursor 23S rRNA. The IVS element, in turn, contains an ORF that encodes a hypothetical ribosomal S23 protein (S23p). Although S23p can be synthesized in vitro in the presence of an engineered E. coli promoter and ribosome binding site, results suggest that...
متن کاملTwo systems for targeted gene deletion in Coxiella burnetii.
Coxiella burnetii is a ubiquitous zoonotic bacterial pathogen and the cause of human acute Q fever, a disabling influenza-like illness. C. burnetii's former obligate intracellular nature significantly impeded the genetic characterization of putative virulence factors. However, recent host cell-free (axenic) growth of the organism has enabled development of shuttle vector, transposon, and induci...
متن کاملHorizontally Acquired Genes Are Often Shared between Closely Related Bacterial Species
Horizontal gene transfer (HGT) serves as an important source of innovation for bacterial species. We used a pangenome-based approach to identify genes that were horizontally acquired by four closely related bacterial species, belonging to the Enterobacteriaceae family. This enabled us to examine the extent to which such closely related species tend to share horizontally acquired genes. We find ...
متن کاملGenetic mechanisms of Coxiella burnetii lipopolysaccharide phase variation
Coxiella burnetii is an intracellular pathogen that causes human Q fever, a disease that normally presents as a severe flu-like illness. Due to high infectivity and disease severity, the pathogen is considered a risk group 3 organism. Full-length lipopolysaccharide (LPS) is required for full virulence and disease by C. burnetii and is the only virulence factor currently defined by infection of ...
متن کاملMobile genetic elements in Coxiella burnetii: Friends, foes or just indifferent?
The genome of the obligate intracellular pathogen Coxiella burnetii contains a large number of mobile genetic elements including two group I introns and an intervening sequence (IVS) that interrupt the 23S rRNA gene; an intein within dnaB (encoding replicative DNA helicase) and a homing endonuclease. The introns are self-splicing ribozymes and able to inhibit ribosome function and retard bacter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017